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CONSTITUTIVE EQUATIONS FOR A CLASS
OF NONLINEAR ELASTIC SOLIDS*

R. J. EVANS and KARL S. PISTER

University of California at Berkeley

Abstract-Constitutive equations are developed for elastic solids sustaining deformation for which displacement
gradients are small but where complete physical nonlinearity is permitted The constitutive equation includes
as special cases forms considered by recent authors; at the same time, more general effects are incorporated, in
particular, coupling between volumetric and deviatoric components of strain.

Some simple states of deformation are examined and the plane elastostatic problem is formulated, together
with the solution of an example problem by perturbation techniques.

INTRODUCTION

A NUMBER of materials of interest to engineers exhibit nonlinear mechanical effects, even
when sustaining small deformations. Examples are materials-such as concrete, rock,
solid propellants and foamed elastomers-whose tensile and compressive responses often
differ and whose behavior is strongly dependent on stip'trimposed hydrostatic stress.
Another example is sand, which dilates when subjected to a state of simple shearing
stress. Although this type of nonlinearity is a special case of the general' nonlinear theory
of elasticity [1], rather than simplify results which are complicated by simultaneous
consideration of physical and kinematic nonlinearity, it has been more convenient to
introduce kinematic restrictions initially and to develop the theory from this viewpoint.
Accordingly, one is led to examine a theory of elastic solids for which kinematic linearity
is retained but where physical nonlinearity is permitted.

The first significant contribution to physically nonlinear elasticity theory appears to
have been in 1894 by Voigt [2], who extended the stress-strain law of Hooke-Cauchy
to include quadratic terms in strain and thus developed a five constant elasticity theory,
applying it to the solution of simple problems. The same form of law was considered by
Murnaghan [3] and Biot [4]. Sternberg [5] applied the five constant theory to the exten
sion of a rod and to torsion of a circular cylinder. Novozhilov [6] pointed out the restric
tive nature of Voigt's five constant theory in its application to the behavior of most real
materials and discussed a constitutive law retaining linear and cubic terms in strain,
having six elastic constants.

The first application to boundary value problems appears in the work of Kauderer [7],
who used perturbation techniques to obtain approximate solutions to a number of
problems, although the form of constitutive law chosen, as will be seen, is quite restrictive.
Recently, Savin [8] has used the restrictive form of constitutive theory due to Kauderer
to obtain an approximate solution method' for the extension of an infinite plate with a
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(1.1)

hole and has applied this method to specific problems [9]. A coupled thermoelastic
theory where nonlinearity is present with respect to mechanical as well as thermal vari
ables has been considered by Dillon [10] and, in a more general context, by Herrmann [11].
A special class of viscoelastic materials has been considered by Rivlin [12] and by Bergen
et al. [13] with a constitutive law that is equivalent, for a given class of deformations, to a
sub-class of that considered here.

H should be noted that the present definition of physical nonlinearity incorporates
Reiner's defi~itions of physical and tensorial nonlinearity [14].

The present paper develops in the first section the most general form of constitutive
law for isotropic solids, with the kinematic restrictions cited above. Features of the
previous works mentioned then appear as special cases when suitable restrictions are
placed on the form of the constitutive equation. In the second section, some simple
states of deformation are investigated, through which the significance of the material
property functions is made to appear. Likewise, the simplest type of coupling between
volumetric and distortional effects is illustrated. Finally, the formulation of the plane
elastostatic problem is treated, together with an approximate solution of the problem
of uniform stretching of an infinite plate containing a circular hole.

1. FORMULATION OF THE CONSTITUTIVE LAW FOR HOMOGENEOUS
ISOTROPIC SOLIDS

The mechanical constitutive equations for an elastic solid in the sense of Green can be
written·

au
Tij =-

aeij

where Tij and eij are, respectively, the stress and strain tensors and U is the strain energy
density. As stated above, the purpose of the present paper is to develop constitutive
equations for which complete kinematic linearity is retained while permitting arbitrary
physical nonlinearity. Accordingly, no distinction between material and spatial reference
frames is required, and the linearized strain-displacement equations

e·· = lJu· .+ u· .)l] 2\ I,) J,I (1.2)

apply, limiting deformation to the class of small strain, small rotation [6]. In (1.2) Ui

are the components of the displacement vector. For a homogeneous, isotropic solid, the
strain energy density can be expressed as

U = U(I 1, I 2, I 3 )

where Ii' independent invariants of the strain tensor, are here taken to be

I 1 =8U,

I 2 = !B/cmBk""

I 3 = !Bk",BknS",n'

(1.3)

(1.4)

• Latin indices take on values 1. 2 or 3. Tensor notation is used and, for convenience, quantities are referred
to rectangular Cartesian coordinates, Z•. unless otherwise specified.
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From (1.2) and (1.3)

or

where
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(1.5)

(1.6)

(1.7)

(1.8)

From (1.6), the functions cf>; (material strain functions) are related by three equations

Ocf>l ocf>j
olj = oIi '

The constitutive law (1.5) may also be derived from the theory of isotropic matrices
[15] without assuming the existence of U. The material strain functions, no longer re
stricted by (1.71 define a Cauchy elastic solid.

It should be noted that the choice of independent strain invariants appearing in
(1.3) and (1.4) is arbitrary. The particular advantage of the choice here is the separation of
three separate material functions cf>i in a simple manner [16]. (Compare with the form
commonly used in finite elasticity [1 ].)

As an example of a typical constitutive equation, let U be written as a polynomial in 1;.
If terms in U from second to fourth order in strain are retained, the "cubic" stress-strain
law js obtained:

"ij = AuBabij+ A 12Bij+ A21B~bij+A22BkmBkmbij

+ 2A22 Ba Bij+ A 23BikBjk + A31B~kbij+ A 32BkmBkmBij

+ A 33&kmBkm&nnOij+ A 33B~kBij+ A 34Bk~ip&jp

+ 3A34Bkm&knBmnbij'

Terms are grouped in order in (1.81 and it is readily seen that

cf>l = Allll+A2l/I+2A2212+A3ln+2A331112+A3413,

4>2 = A12 +2A22 / 1+ 2A321 2 + A 331i, (1.9)

4>3 = A23+A3411'

It is to be noted that for a nonlinear solid at small strain, reduction to a linear law
for &ij -+ 0 need not be required.

There is, furthermore, no a priori reason for requiring that terms of a prescribed order
be present in all material functions. The only reason for doing so here is to examine the
most general polynomial law of a given order. In some instances it may be advantageous
to expand the material functions appearing in (1.6) in power series of the invariants Ii;
in such instances, the relations (1.7) must be observed. Finally, before passing to an examin
ation of some special cases, it should be mentioned that anisotropy and nonhomogeneity
can be treated with no further formal difficulty.
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Incompressible elastic solids

For incompressible media,

and
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U=U(12,I 3 )·

Introducing a Lagrangian multiplier, - p, (1.2) becomes

au 011
Til = -+(-p)-

OS,j oSij

and, from (1.10),

(1.1 0)

(1.11 )"C,j = - pi5ij +¢z8ij+¢3Sik8jk'

¢2 and ¢3 are as defined by (1.6), and (1.7) gives the single equation

0¢2 O¢3

01
3

= 01--;'

p has dimensions of stress and in certain cases has physical significance as hydrostatic
pressure.

The inverse constitutive law

Consider the scalar function, C, the complementary energy density, dependent only
on the current state of stress such that

Then, by arguments identical to those used for the strain energy density function, for a
homogeneous, isotropic solid

C = C((Jl, 02' ()3),

where 0b the invariants of the stress tensor, are given by

81 = "Ckk,

82 = !Tkm"Ckm,

03 = 1T km"Ckn"C mn '

The inverse constitutive law

is thus obtained, where

(1.12)

(1.13)

DC
;:;-8 .
( i

(1.14)

From (1.14) it follows that the material stress functions, (Xi'

equatIOns
are related by three

(1.15)
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The existence of the complementary energy density function follows from the exist
ence of the strain energy density function in that C is the Legendre transformation of U,
the two functions being related by

(1.16)

The condition that (1.5) has a unique inverse (1.13) is that the Hessian determinant of
U is non vanishing, i.e.

I
c.2U IH(U) =DET 8 .. 8 =I- O.
e'l ekm

(1.17)

(1.19)

The condition (1.17), which is identical to the non-vanishing of the Jacobian of
Li/f.km), is taken as a restriction on the material strain functions. It can be shown [17] that
the restriction, together with the requirement that U be non-negative, is equivalent to
Drucker's postulate of stability [18]. Equation (1.16) may be used as a starting point for
obtaining inverse constitutive laws. Suppose that the form of (1.5) and hence of U is
known. Since, from (1.5),

Lijeij = ¢111 + 2¢212 + 3¢313' (1.18)

(1.16) may be used to obtain C(1;). From (1.5) and making use of the Cayley-Hamilton
theorem, (Ji(I) are obtained, the relation being

(Jl = 3¢1 +¢211+2¢312'

(J2 = ~¢i+¢1¢21 1+(¢~ +2¢1(3)12+3¢2¢313

+ ¢~(l2Ii - li12+ n +21113)'

(J3 = ¢i +¢i¢211+2(¢I¢~+¢i¢3)12 +(¢~ +6¢1¢2(3)13

+(¢1¢~ + ¢~(3)(iIi - 2nl2+ 21~ +41113)

+¢2¢~(iIi+iIi12+tnl3+ 51213)

+t¢~U21~ +tIil2-3nn + IiI3+ 2n + 3n +61 11213)'

C((Ji) is then computed.
As Truesdell (ibid), who uses a different but equivalent approach based on isotropic

functions, points out, the analysis in general will be purely formal. However, if (1.5) is
known in polynomial form, (1.13) may be obtained as a power series in (Ji by using (1.19)
and equating coefficients of the power series 1~lf1~. Particular forms of (1.13) are analog
ous to those of (1.5), the "cubic" law, for instance, being as (1.8) with Lij replaced by
eij and the elastic moduli AABreplaced by inverse moduli BAB •

Further restrictions on the material functions

The material functions, ¢i' are restricted by (1.7) and (1.17). Further restrictions follow
from considerations similar to those examined by Truesdell (ibid) and by Baker and
Ericksen [19] for general nonlinear elastic solids:

(a) A zero state of stress must correspond to a zero state of strain (for compressible
media).

(b) The greatest principal strain occurs in the direction of greatest principal stress.
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Implications of these restrictions on both 4Ji and (Xi are the same as those discussed in the
references cited.

Special classes of constitutive laws

There are sub-classes of the constitutive laws (1.5) and (1.13) which have been con
sidered previously or which may describe the behavior of special classes of materials. Two
particular sub-classes are now considered.

(a) Materials for which the strain energy function does not depend on 13

If

(1.20)

then

(1.21)

and (1.5) reduces to

(1.22)

Such a constitutive law was considered by Wainwright (ibid) in application to a
physically nonlinear thin shell theory and by Dong [20] for viscoelastic solids. In appli
cations to viscoelasticity, of course, 4Ji depend on time as well as on the state of strain.

For incompressible solids, (1.22) has the form

This form of law was employed by Bergen et al. (ibid) for a restricted class of deformations
of viscoelastic solids for which the material function could be expressed as a product of a
function of time alone and a function of strain. Thus, the problem was pseudo-elastic in
nature.

Reduction of the constitutive law to the form (1.22) is valid only where experimental
evidence shows the condition to be true, e.g. [13]. The form of (1.5) cannot be simplified
by geometric arguments.

When (1.21) holds, then the inverse law (1.13) may be similarly simplified, i.e.

(1.23)

and

(1.24)

A proof of this follows:
When 4J3 = 0, it is seen from (1.18) and (1.19) that

and that

(J1 = (J1(l1, 12),

82 = (J2(1 1, 12 ),

(J3 = (J3(lt> 12, 13),

(1.25)

(1.26)
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From (1.16~ making use of (1.20) and (1.25),

C(1i) = C(I l' 12 ).

433

(1.27)

If the complementary energy density is now expressed in terms of stress invariants,
it follows from (1.26) and (1.27) that C cannot depend on 03 since °3, in turn, depends on
13 •

Hence,

and (1.23) and (1.24) follow.
(b) Materialslor which hydrostatic stress depends only on volumetric strain
A class of materials which may be of interest is that for which the hydrostatic stress,

'rkk, is a function of the volumetric strain, ekk, i.e.

°1 = °1(11)' (1.28)

The form taken by (1.5) to satisfy this condition is obtained as follows:
Rewriting the first of (1.19),

01 = 3ep1+/1ep2+2/2ep3' (1.29)

With a view to satisfying (1.28~ let

ep1 =/1(11)+12(/ 1,/2,/3), (1.30)

From (1.28~ (1.29) and (1.7~/2' ep2' and ep3 must satisfy the four conditions

3/2 +I 1ep2 +2/2ep3 = 0,

012 Oep2
=

012 iJI 1 '

012 = Oep3, (1.31)
iJI3 iJI 1

Oep2 Oep3
iJI

3
= 01

2
•

Conditions (1.31) can be satisfied only if/2, ep2 and ep3 are of the form

12 = tl d3(12 -!/1),

ep2 =13(I2-Mj~ (1.32)

ep3 = o.
Thus, from (1.30) and (1.32~ it follows that, if the constitutive law satisfies the condition

(1.28~ it has the form

'rij = [f1(ekk)-te",J3(e"me"m-tef,,)]c5ij+/3(ekmekm-te~,,)eij' (1.33)

Equation (1.33) is the form of constitutive law used by Kauderer (ibid) who obtained it by
assuming, in addition to (1.28~ that the deviatoric stress was related to deviatoric strain
through the second invariant of deviatoric strain. From (1.33) it is readily seen that

(1.34)
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If fl and j~ are analytic, (1.33) may be expressed as

(1.35)

If (1.5) is further restricted so that deviatoric stress is a function of deviatoric strain
only, i.e.

Ti ) -·:hkk(jij = f(8ij-18kk(jij),

then from (1.34)'/3 must be a constant and the coefficients in (1.35) are restricted to

bo = b,

bn = 0 if n ~ 1.

Then (1.5) becomes

where

M

Tij = I a~(ekk)n(jij+ b8ij
n=1

a~ = an if n ~ 2.

(1.36)

Equation (1.36) describes behavior linear in shear and nonlinear in bulk response. It
describes, for instance, the behavior of certain fibrous composites which are linear in
shear but whose response in simple compression differs from that in simple tension even
for very small strains.

2. SIMPLE STATES OF STRESS AND DEFORMATION

Examination of simple states of stress and deformation illustrates the physical pheno
mena appearing in the physically nonlinear constitutive theory discussed in the previous
section. Left in general form involving material functions of strain or stress, the resulting
expressions may be misleading since material functions are, in certain cases, isolated. The
material functions, however, are themselves functions of the state of strain (or stress) and
cannot be determined from a single test. Utilizing approximate representations of these
functions (such as polynomials), it is possible to identify features arising from physical
nonlinearity. A complete definition of the material functions (as functions of three in
dependent variables) requires an elaborate experimental program.

Homogeneous states of stress

(a) Simple tension: Tll = T; Ti) = 0, i ¥ 1, j ¥ 1
It is convenient to use (1.13) as the constitutive law. Then,

(\ = T,

()2 = tT2
,

()3 = 1T3,

(2.1)
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and strains are given by

1:12 = 1:13 = 1:23 = o.
For a complete quadratic law, for instance,

(Xl = BllT+B21T2+B22T2,

(X2 = B 12 +2B22 T,

(X3 = B23

and
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(2.2)

(2.3)

(2.4)
1: 11 = (B ll +Bu)T+(B21 +3B22 +B23)T2,

1:22 = 1:33 = B llT+(B 21 +B22)T2.

It is to be noted that by using (1.13) instead of (1.5) and appealing to the invertibility
condition (1.17) the ambiguity connected with existence and uniqueness of solution in the
simple tension test (as arises in general nonlinear theory) is avoided. Note also that the
extensional strain is an unsymmetric function of stress.

(b) Simple shear: Let 1: 12 = I: be the only non-vanishing component of strain.
Using the constitutive law (1.5),

13 = 0

and, retaining up to cubic terms in the constitutive equation (1.81

"t'12 = rP21: = (A 12 +2A 32I:)I:,

"t'11 = "t'22 = rPl +rP3e2 = (2A 22 +A23 )e2,

"t'33 = 4>1 = 2A221:2,

"t'13 = "t'23 = o.

(2.5)

(2.6)

In general, for this state of strain, rPl and rP3 will not be zero and consequently, in
order to maintain simple shear deformation, normal stresses must be applied. From (2.5)
it is clear that the constant A 12 is identified with the linear shear modulus while the
remaining constants are associated with nonlinear response. The dual of simple shearing
deformation (i.e. simple shearing stress) leads to the result that simple shearing stress is
accompanied by dilatation. Starting from (1.13) it is easily shown that

~V 2
I:kk = V = 3(Xl +2(X3"t' •

Fop a cubic approximation of the constitutive equation

~V 2V = 2(3B22 +B23)"t' • (2.7)
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These states of stress illustrate the difficulty mentioned above regarding experimental
determination of the material functions. For example, although the relationship between
shear stress and shear strain involves only the material function 4J2' this does not mean
that it would be possible to determine 4J2 from a shear test alone. Since, for simple shear,

11 = 12 = 0,

4J2(I to 12, 13) could only be determined to the extent of its dependence on 12 ,

(c) Combined hydrostatic stress and shear stress

Let
T 12 = T,

Using (1.13)
(}l = P,

(}2 = ip2 + -r
2

,

(}3 = p(";"-p2 + tT2
),

and strains are given by

811 = 8U = (Xl +~2P+(X3(~p2+-r2),

833 = (Xl +!(X2P+~3p2,

812 = (X2 T +!(X3P-r,

813 = 823 = O.

Using the complete quadratic law,

(Xl = BllP + B21p2
+ 2B22(!p2

+ -r
2

),

(X2 = B 12 +2Bu p,

whence

(2.8)

(2.9)

(2.10)

8 11 = 822 = (B ll +!B12)p+(B2l +iBu+~B23)p2+(B22+B23)T2,

83 3 = (B ll +!B12 )p+(B2l +iB22 +~B23)p2+B22-r2, (2.11)

812 = B 12T+(2B 22 +!B23 )pT.

This state of stress illustrates the coupling which, in general, exists between bulk and
deviatoric effects and is particularly significant for filled heterogeneous materials. For
example, in (2.11h the shear strain-stress law is seen to be an unsymmetric function of the
hydrostatic stress. Evaluation of the constants appearing in (2.11) could be carried out
by conducting triaxial tests of the type commonly employed in solid propellant and soil
mechanics experiments.

3. PLANE ELASTOSTATIC BOUNDARY VALUE PROBLEMS

In this section the implications of physical nonlinearity on formulation and solution
of two-dimensional boundary value problems are discussed. In what follows it will be
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assumed that, for the generalized plane stress problem, dependent variables have been
averaged by integration over the small thickness of the solid plate.

By redefining the material functions 4>i and lXi' the constitutive law for plane problems
may be simplified from the forms (1.5) or (1.13) to forms similar to those of (1.22) and
(1.24).

For the case of plane strain, the only non-vanishing components of strain are S11'
S12 and S22'

From (1.4), the strain invariants become

and from (3.1)

11 = Su + S22'

12 = -!(si 1+ S~2 + 2si2)'

13 = j-Ml +S~2 +3si2(SU +S22))

(3.1)

13 = 1 1(12 --Mi). (3.2)

Thus, if (3.2) is used in (1.3), the strain energy density function may be written as

U = U(1 1,12)

and

(3.3)

where the prime indicates that 4>; is not the same function as 4>i'
As an example, if the "cubic" constitutive law as given in (1.8) were used in a plane

strain problem, the material functions 4>i given by (1.9) could be replaced by 4>~ and 4>~

in (3.3) where

4>'1 = A u l 1+(A21 -!A23)li + (2A 22 +A 23)12

+2(A33 +A34)1 112 +(A 31 -1A 34)n,

4>2 = A12+(2A22+A23)1112+2A3212+(A33+A34)Ii·

As shown in the first section, a constitutive law of the form (3.3) has an inverse

(3.4)

For generalized plane stress

and by the same arguments as used above, the constitutive law may be simplified to the
form (3.3) or (3.4). In the sequel, the primes on the material functions in (3.3) and (3.4)
will be omitted with the understanding that the constitutive laws (1.5) and (1.13) have been
reduced to the simplified form (3.3) and (3.4).

Direct formulation of the generalized plane stress problem
In plane problems, the only non-vanishing strain compatibility equation is

Sll,22+S22.1l-2s12.12 = O. (3.5)
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Substituting (3.4) into (3.5)

IX 1,l1 +IX1,22 +(IX2<11),22 + (IX 2<22),11 -2(IX2<12),12 = O.

Introducing the Airy stress function, <1>, through the equation*

<~fJ = b~pV2<1>-<I>,~p

(3.6)

(3. 7)

identically satisfies the stress equilibrium equations. Substituting then from (3.7) into
(3.6), the compatibility equation becomes

IX1,pp+(IX2<1>,22).22 + (IX 2<1>, 11), 11 + 2(IX 2<1>, 12),12 = 0

or

(3.8)

Thus, for given material stress functions, IX1 and IX2_(3.8) may be expressed explicitly
as a nonlinear fourth order homogeneous partial differential equation.

The invariants of stress in terms of <I> are

() 1 = <I>,~~,

(}2 = t<l>,~fJ<I>,~p·

As an example of (3.8~ for the "cubic" strain-stress law,

Bij = B ll</ckbij+ B 12<,j +B 21 <;kbij +B22<km<kmbij

+ 2B2:l</tk<iJ +B 31<fkbij+B 32 <km<kmbij

+B33 'ft",<tm<nnbiJ +B 33<;k<ij,

for which

IX 1 = B l1 (}l +B21(}i+2B22(}2+B31(}i+2B33(}1(}2'

IX2 = B 12 +2B22 (}1 +2B32(}2+ B33(}i,

(3.8) then takes the form

(Bll + BdV4<1l+B21V2[(V2<1»2]

+ B22[V2(<I>,~p<l>,~p)+ 2(V2<1><I>,~p),~p]

+ B 31V2[(V2<1»3] + B3z(<I>,~P<l>,~P<l>,Yb),Yb

+ B33[V2(V2<1><I>,~p<l>,~p) + ((V2<1»2<1>,IXP),~P] = O.

(3.9)

(3.10)

(3.11)

(3.12)

Perturbation solution scheme for the compatibility equation

It is not possible, in general, to obtain a closed form solution for (3.8). If, however, the
constitutive law is "close" to the linear law and is in a polynomial form, an approximate
solution scheme may be generated by perturbing the linear solution. This solution
scheme has been used by Kauderer (ibid) and by Savin (ibid) for the particular class of
nonlinearity referred to earlier. <I> is expanded in terms of a characteristic parameter, IX,

* Greek indices take on values 1, 2 only.
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(3.13)

Substituting from (3.13) into (3.8) and requring the coefficient of each power of IX to
vanish, a succession of linear differential equations is obtained. The coefficient of 1X1 gives
the compatibility equation associated with the linear problem while, for each successive
power of IX, there is obtained a differential equation which is the biharmonic equation with
a forc,ing function dependent on the preceding solutions, i.e.

V4 <1>(1) = 0,

(B ll +BdV4<1>(2)+F 1(<I>(1») = 0,
(3.14)

(B
ll

+BdV4 <1>(n) +Fn(<I>(1), . .. <I>(n-1)) = O.

It is convenient to take the solution for 1X<I>(l) to satisfy the actual boundary conditions
whilst the functions <I>(n)(n > 1) satisfy homogeneous boundary conditions.

To illustrate (3.14), for a material with constitutive law (3.10), the first three terms of
(3.14) are

V4 <1>(1) = 0,

(B ll +BdV 4 <1>(2) +B21V2[(V2<1>(1))2] (3.15)

+B [V 2(<1>(1)<1>(1») +2(\72<1>(1)<1>(1») ] = 022 ,«fJ ,«fJ ,«fJ ,«fJ '

(B 11 +BdV4 <1>(3) + 2B21V2(V2<1>(1)V2<1>(2»)

+B [2V 2(<I>(1)<I>(2)) + (\72<1>(1)<1>(2) +<I>(1)V 2<1>(2») ]22 ,«fJ ,«fJ ,«fJ ,«fJ ,«fJ

+ B V2[(\72<1>(1»)3] +B (<1>(1)<1>(1)<1>(1»)31 32 ,«fJ ,«fJ ,y{) ,y{)

+B [\72(V2<1>(1)<I>(1)<I>(1») + ((\72<1>(1»)2<1>(1») ] = O.33 ,«fJ ,fI.fJ ,«fJ ,«fJ

An alternative approximate formulation of the plane problem

For generalized plane stress, the formulation (3.8) is convenient for the constitutive
law (3.4); however, it is not useful for plane strain since,33' which occurs in (3.4), is
non-zero. Furthermore, in the nonlinear case, the condition

(3.16)

will not enable '33 to be expressed, in closed form, in terms of '«fJ' An alternative approxi
mate formulation for the problem [1] can be developed by expanding both strain and
stress in powers of a characteristic parameter, IX, i.e.

(3.17)

For polynomial law (3.4), substituting from (3.17) and requiring the coefficient of each
power of IX to be zero, a series of constitutive laws is obtained, each having the form
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eli) = Bll tl£l15ij+B12tlf)+F'(tli- 1)... tW)·

The coefficients of the first three powers of (X in (3.10), for example, give

(1) - B (1)~ +B (1)eij - lltU Uij 12tij ,

elf' = Bllt~i)15ij+B12tlJ' + B21t!J)215ij

+B22t~t~~t5ij+ 2B22tWtU',

ell) = B114~)bij+B12tlJ'+2B21t!J)t~~t5ij

+ 2B22(t~t~~15ij+ t!J)tlj' + tl]'4i»)

+ B31 tW3bij+ B32t1:.!t1~MJ)

+B (t(1)t(1)t(1)t5. +t(1)2t\~»)
3 3 km km "" Ij kk IJ

(3.18)

(3.19)

To formulate the plane stress problem, the Airy stress function (3.7) together with
(3.13) is used in the constitutive laws (3.18), which are then substituted into the compati
bility equation (3.5). The resulting differential equations are, of course, precisely those
given by (3.14). However, in the present formulation of the problem for plane strain, it is
necessary to eliminate t33 from each of the constitutive equations (3.18). To do this, the
condition (3.16) is used which, from the first of (3.17~ requires that

e~j = 0, n = 1,2, .... (3.20)

(3.21)

Using (3.20) in (3.18~ the equivalent plane strain constitutive laws may be obtained.
The equations (3.19), for example, are

eW = Bllt~~)bap+B12t~1),

eW = Bllt~~)t5ap+B12tW+B21t~~)2t5ap

+B22tWtW15aP + 2B22t~~)t~),

eW = Bl1t~~)bap+ BI2t~~) + 2B21t~~)tW<5aP

+ 2B22(tWtWbap + tWt~) + t~1)tW)

+ B31t~~)3 <5ap + B32tWtWt~)

+B3itWtWt~~c5ap+t~~)2t~»),

where

- B I2

B ll = (B ll +B 12 )Bll ,

B12 = B 12,
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B B 12
22 = (B 11 +B12)B22,

- 1 { [4 4 22]B31 = (B B )S (B 11 +Bd B12B31-B11B32 +2BllB12B33
11 + 12

-2[B12B21 +B11(Bl1-2B12)B22F},

- 2 2
B32 = B32 - (B 11 +B 12) B22, (3.22)

- .' 1 { [2 2]
B33 = (B

ll
+B12~3 (B 11 +B 12) BllB32+B12B33

-2[B12B 21 +B11(B ll -2B 12)B22 ]BU}'

Thus, by repl~ng the cbostants BAB in the constitutive law by equivalent constants
BAB' the plane strain problem may be considered as if it were plane stress and, as in
the linear case, a given solution may be adapted to plane strain or plane stress provided
the elastic constants are properly interpreted.

It is to be noted that, for nonlinear solids, the solution of plane problems, in general,
will not be independent of the elastic constants.

From (3.22) it is seen that the cubic constants in plane strain will not be zero even if
the cubic constants in the constitutive law are zero. The second perturbation of quadratic
terms is thus effected both through the coefficients B2A and B3A •

Example-the extension of an infinite plate containing a circular hole
Kauderer (ibid) obtained a number of approximate solutions to plane stress problems

for a special class of nonlinearity. A single perturbation of quadratic terms was considered.
Using complex variables, Savin (ibid) formulated the problem of the tension of an infinite
plate containing a hole, again using a single perturbation of Kauderer's quadratic law.
In the solution described here, the first and second perturbations are carried out for the
"cubic" strain-stress law given by equation (3.10).

The equations solved are (3.15). These take into account the most general non
linearity up to third order in the strain-stress law and, as shown above, may be used for
plane stress or plane strain depending on the interpretation of the elastic constants.

Figure 1 shows part of the plate. The radius of the hole is a and a uniform tension,
S, is applied at infinity. It is convenient to use polar coordinates rand () located as shown.
Since the equations (3.15) are in invariant form, they may be applied in curvilinear co
ordinates if the partial differentiation is replaced by appropriate invariant differentia
tion [21].

The solution method is straightforward and will not be discussed in any detail. The
classical solution is well known [22] and provides the stress function eIl(1). The result is
then utilized in computing the forcing function in the governing equation for eIl(2), this
function subsequently being determined to satisfy homogeneous stress boundary condi
tions. eIl(3) is determined in a similar manner. Of particular interest is the effect of non
linearity on the stress concentration factor i.e.,

T6J..r = a, () = nI2).
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FIG. I.

s

a2 <1>
'C66 = ar2

and, computing this quantity, one obtains

[3
S . S2 2 2

~!6a = S +B (-2B21 -9B22 )+ B2 (9'3B21 +66B21 B22 + 133B22 )

6=1</2

where

B = Bll +B12

The general effect is as expected. As shown in Fig. 2, pOSItIve elastic constants,
BAJA > 1) indicate that the material softens under increasing uniaxial tensile load, and a
corresponding reduction in stress concentration would be expected. The opposite effect,
i.e. an increase in stress concentration, would occur for the same material subjected to
uniaxial compression.

A feature brought out by the stress concentration is that the second perturbation for
quadratic terms is not small compared with the first perturbation unless the deviation
from linearity is very small.

As seen from Fig. 2(a), the ratios B21 S/B and 3B22S/B are measures of nonlinearity
with respect to the uniaxial test and each ratio has a coefficient in the second perturbation
of between four and five times its coefficient in the first perturbation. Thus, the magnitude
of the stress concentration due to the second perturbation would be approximately the
same as that due to the first perturbation for a nonlinearity of 20 per cent.

In order to ~onsider more fully the convergence of the perturbation series, two further
perturbations were carried out for the coefficient.B21-

Omitting computational details, for a constitutive law

6ij = Bll'Ckk(jij+B12'Cij+B21'Cfk(jij,

the stress concentration factor is

'C66 = S[3 - 2k +9·33k2
- 50'4P +2974

... ]
r=a

6=1</2

(3.23)
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5

E

/

(a) "Quadratic" material, B2A~ 0

s /

~

E

where

(b) "Cubic" matenal, B3A > 0

FIG. 2.

is the nonlinearity ratio with respect to uniaxial tension.
If an approximation of 10 per cent to the correction of stress concentration due to

nonlinearity is taken as an acceptable criterion to terminate the perturbation series, one
might infer from (3.23):

(a) for one perturbation to be satisfactory, k must not exceed 2 per cent,
(b) for k = 5 per cent, at least two perturbations are required.
It also appears doubtful that the alternating series (3.23) would converge for values

of k greater than 15 per cent.
It must be emphasized that general conclusions regarding convergence and accuracy

cannot be based on qualitative conclusions for a particular stress state and a particular
type of nonlinearity.

In another paper [23] the authors have examined axisymmetric plane strain boundary
value problems for physically nonlinear solids, Proceeding from the single radial dis
placement equation of equilibrium, the limitations of the perturbation method were
found to be consistent with those described in the present paper.

Thus, it appears that, for the present, the use of the perturbation method in the solu
tion of boundary value problems in nonlinear elasticity must be regarded with caution.
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R....e-Des equations constitutives sont developpees pour les solides elastiques supportant des deformations
pour lesquelles des inclinaisons de deplacement sont petites mais oil la non-linearite physique compl~ est
permise. L'equation constitutive inclue, comme cas speciaux, des formes considerees par des auteurs reeents;
en meme temps, des effets plus generaux sont incorpores, en particulier l'accouplement entre des composants
de contrainte volumetrique et deviatoire.

Quelques cas d'etat de simple deformation sont examines et Ie probleme de I'elastostatique plane formules,
avec la solution d'un probleme exemple par perturbation technique.

ZllllllDlllellf....... GrundIegende Gleichungen fUr elastische Karper mit aufrechterhaltender Verformung
wurden entwickelt mit kleinen Versehiebungsgefillen, in welchen aber vollstlindige physikalische Nichtlinearitlit
erlaubt ist. Die grundlegende Gleichung enthlUt Formen, besonders beriicksichtigt bei modernen Autoren;
dariiberhinaus sind allgemeinere Wirkungen mit einbeschlossen, insbesondere die Vereinigung zwischen
volumetrischen und abweichenden Beanspruchungskompenenten.

Einige einfache Verformungszustlinde werden untersucht und das fllichenelastostatische Problem wird,
zusammen mit der Lasung eines Problembeispieles bei Starungstechniken formuliert.

ACicTplUCT-Bwpa6O'raHW XOHCTHTYTHBHwe ypUHeHllII Mil YHPyrHX Taep,I1hJX Ten, npoTHBOCTOIUnHX
,neclJoPMal(llH, Mil XOTOphIX rp8,IUIeHTw CMew;elUPl MaJIW, HO r,ne ,nonyclCllCTclI nOJIHlUI 4lH3H'fCCKlUI
HeJ1HHeAHOCTL. KOHCTHTyTHBHOC ypaBHeHHe BXJIIO'I8CT CneUHaJILHWe C.1l)''1aH paCCMOTpeHHhle Me,naBHo
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pa3HblMH aBTOpaMH: B TO :lkC caMOC BpeMlI BXJ1JO'ICHO cwe 6om.wc 06l1(HX pe3YJlbTaTOB pa60Tbl. B

OC06eHHOCTH no 06l1C,IlHHeHHlO MelK.llY 06:&eMHIoIMH H OTKJIOHllJOU1HMlIClI COCTaBHIoIMH '1aCTlIMH ,IleclJOp·

MalUlH. HCCJle.llYJOTclI Hell:OTOpblC npocTble COCTOllHHlI ,IleclJOPMauHH H ccIJOPMYJlHpolllUla 3JlaCT0CTaTII'ICCll:all

np06J1CMa nJlOCll:OCTH COBMCCTHO C peWCHHeM npHMepHoA np06J1eMbI TeXHllJ(ol!: ncpTyp6al.U1H.


